Filters
Question type

Study Flashcards

Determine whether the improper integral converges or diverges. - 16x+2x2\int _ { 1 } ^ { \infty } \frac { \sqrt { 6 x + 2 } } { x ^ { 2 } }


A) Converges
B) Diverges

C) A) and B)
D) undefined

Correct Answer

verifed

verified

Find the area or volume. -Find the volume of the solid generated by revolving the region under the curve y=8e2x\mathrm { y } = 8 \mathrm { e } ^ { - 2 \mathrm { x } } in the first quadrant about the yy -axis.


A) 4π4 \pi
B) 64π64 \pi
C) 8π8 \pi
D) 8π38 \pi ^ { 3 }

E) A) and B)
F) C) and D)

Correct Answer

verifed

verified

Evaluate the integral. - x+10x+2dx\int \frac { x + 10 } { x + 2 } d x


A) x+8lnx+2+Cx + 8 \ln | x + 2 | + C
B) x+12lnx+2+Cx + 12 \ln | x + 2 | + C
C) 8(x+2) 2+C- \frac { 8 } { ( x + 2 ) ^ { 2 } } + C
D) (x2/2+10x) lnx+2+C\left( x ^ { 2 } / 2 + 10 x \right) \ln | x + 2 | + C

E) A) and B)
F) None of the above

Correct Answer

verifed

verified

Integrate the function. - 9dx9+x2\int \frac { 9 \mathrm { dx } } { \sqrt { 9 + \mathrm { x } ^ { 2 } } }


A) 9lnx+9+x2+C9 \ln \left| x + \sqrt { 9 + x ^ { 2 } } \right| + C
B) 2x2+9+C\frac { 2 } { x ^ { 2 } + 9 } + C
C) 9ln9+x2+C9 \ln \left| \sqrt { 9 + x ^ { 2 } } \right| + C
D) x+ln9+9+x2+Cx + \ln \left| 9 + \sqrt { 9 + x ^ { 2 } } \right| + C

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - 131x2dx\int _ { 1 } ^ { 3 } \frac { 1 } { x ^ { 2 } } d x


A) 141200\frac { 141 } { 200 }
B) 141400\frac { 141 } { 400 }
C) 71100\frac { 71 } { 100 }
D) 141100\frac { 141 } { 100 }

E) C) and D)
F) A) and B)

Correct Answer

verifed

verified

Solve the problem. -A rectangular swimming pool is being constructed, 18 feet long and 100 feet wide. The depth of the pool is measured at 3 -foot intervals across the length of the pool. Estimate the volume of water in the pool using the Trapezoidal Rule.  Width (ft)   Depth (ft)  0535.56697127.5158189\begin{array}{l|l}\text { Width (ft) } & \text { Depth (ft) } \\\hline 0 & 5 \\3 & 5.5 \\6 & 6 \\9 & 7 \\12 & 7.5 \\15 & 8 \\18 & 9\end{array}


A) 12,300ft312,300 \mathrm { ft } ^ { 3 }
B) 8200ft38200 \mathrm { ft } ^ { 3 }
C) 14,400ft314,400 \mathrm { ft } ^ { 3 }
D) 10,900ft310,900 \mathrm { ft } ^ { 3 }

E) None of the above
F) B) and C)

Correct Answer

verifed

verified

Integrate the function. - 16x2dx\int \sqrt { 16 - x ^ { 2 } } d x


A) 8sin1(x4) +x16x22+C8 \sin ^ { - 1 } \left( \frac { x } { 4 } \right) + \frac { x \sqrt { 16 - x ^ { 2 } } } { 2 } + C
B) x1616x2+16x2x+C\frac { x } { 16 \sqrt { 16 - x ^ { 2 } } } + \frac { \sqrt { 16 - x ^ { 2 } } } { x } + C
C) 16x16x2+x2+C\frac { 16 x } { \sqrt { 16 - x ^ { 2 } } } + \frac { x } { 2 } + C
D) 8xx16x22+C8 x - \frac { x \sqrt { 16 - x ^ { 2 } } } { 2 } + C

E) A) and B)
F) None of the above

Correct Answer

verifed

verified

Find the area or volume. -Find the volume of the solid generated by revolving the region under the curve y=7xy = \frac { 7 } { x } , from x=1x = 1 to x=x = \infty , about the xx -axis.


A) 7π7 \pi
B) 17π\frac { 1 } { 7 } \pi
C) 7
D) 14π14 \pi

E) All of the above
F) B) and D)

Correct Answer

verifed

verified

Solve the problem. -Find the length of the curve y=36x2y = \sqrt { 36 - x ^ { 2 } } between x=0x = 0 and x=3x = 3 .


A) 16π\frac { 1 } { 6 } \pi
B) 2π2 \pi
C) 32π\frac { 3 } { 2 } \pi
D) π\pi

E) A) and B)
F) B) and D)

Correct Answer

verifed

verified

Evaluate the integral. - 1x49+x2dx\int \frac { 1 } { x \sqrt { 49 + x ^ { 2 } } } d x


A) 17ln7+49+x2x2+C- \frac { 1 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 + x ^ { 2 } } } { x ^ { 2 } } \right| + C
B) 17ln749+x2x+C- \frac { 1 } { 7 } \ln \left| \frac { 7 - \sqrt { 49 + x ^ { 2 } } } { x } \right| + C
C) 17ln7+49+x2x+C- \frac { 1 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 + x ^ { 2 } } } { x } \right| + C
D) 17ln7+49+x2x+C\frac { 1 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 + \mathrm { x } ^ { 2 } } } { \mathrm { x } } \right| + C

E) All of the above
F) A) and B)

Correct Answer

verifed

verified

Determine whether the function is a probability density function over the given interval. - f(x)=5sin5x over [π10,π5]f ( x ) = 5 \sin 5 x \text { over } \left[ \frac { \pi } { 10 } , \frac { \pi } { 5 } \right]

A) True
B) False

Correct Answer

verifed

verified

Use a trigonometric substitution to evaluate the integral. - dxx(1+25ln2x) \int \frac { d x } { x \left( 1 + 25 \ln ^ { 2 } x \right) }


A) 15xtan1(5lnx) +C\frac { 1 } { 5 x } \tan ^ { - 1 } ( 5 \ln x ) + C
B) 15tan1(25ln2x) +C\frac { 1 } { 5 } \tan ^ { - 1 } \left( 25 \ln ^ { 2 } x \right) + C
C) 150ln(1+25ln2x) +C\frac { 1 } { 50 } \ln \left( 1 + 25 \ln ^ { 2 } x \right) + C
D) 15tan1(5lnx) +C\frac { 1 } { 5 } \tan ^ { - 1 } ( 5 \ln x ) + C

E) B) and C)
F) All of the above

Correct Answer

verifed

verified

Solve the problem. -Find an upper bound for ES| \mathrm { E } _S | in estimating 05(6x28) dx\int _ { 0 } ^ { 5 } \left( 6 \mathrm { x } ^ { 2 } - 8 \right) \mathrm { dx } with n=8\mathrm { n } = 8 steps.


A) 0
B) 62512288\frac { 625 } { 12288 }
C) 62573728\frac { 625 } { 73728 }
D) 62524576\frac { 625 } { 24576 }

E) C) and D)
F) B) and D)

Correct Answer

verifed

verified

Find the indicated probability. - f(x) =14ex/4;[0,) ,P(1x4) \mathrm { f } ( \mathrm { x } ) = \frac { 1 } { 4 } \mathrm { e } ^ { - \mathrm { x } / 4 } ; [ 0 , \infty ) , \mathrm { P } ( 1 \leq \mathrm { x } \leq 4 )


A) 0.0514
B) 0.1027
C) 0.0685
D) 0.4109

E) C) and D)
F) B) and C)

Correct Answer

verifed

verified

Determine whether the improper integral converges or diverges. - 45ex4x4dx\int _ { 4 } ^ { 5 } \frac { e ^ { - \sqrt { x - 4 } } } { \sqrt { x - 4 } } d x


A) Diverges
B) Converges

C) A) and B)
D) undefined

Correct Answer

verifed

verified

Expand the quotient by partial fractions. - 5x+3(x3) (x1) \frac { 5 x + 3 } { ( x - 3 ) ( x - 1 ) }


A) 9x3+4(x3) (x1) \frac { 9 } { x - 3 } + \frac { - 4 } { ( x - 3 ) ( x - 1 ) }
B) 9x3+4x1\frac { 9 } { x - 3 } + \frac { - 4 } { x - 1 }
C) 18x3+8x1\frac { 18 } { x - 3 } + \frac { 8 } { x - 1 }
D) 9x3+4x1\frac { 9 } { x - 3 } + \frac { 4 } { x - 1 }

E) A) and D)
F) B) and C)

Correct Answer

verifed

verified

Solve the problem. -The following table shows the rate of water flow (in gal/min) from a stream into a pond during a 30 -minute period after a thunderstorm. Use Simpson's Rule to estimate the total amount of water flowing into the pond during this period. Round your answer to the nearest gallon.  Time (min)   Rate (gal/min)  020052501030015250202202520030150\begin{array}{l|l}\text { Time (min) } & \text { Rate (gal/min) } \\\hline 0 & 200 \\5 & 250 \\10 & 300 \\15 & 250 \\20 & 220 \\25 & 200 \\30 & 150\end{array}


A) 7975 gal
B) 6383 gal
C) 6983 gal
D) 6975 gal

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Evaluate the integral. - x2ln9xdx\int x ^ { 2 } \ln 9 x d x


A) 13x3ln9x112x4+C\frac { 1 } { 3 } x ^ { 3 } \ln 9 x - \frac { 1 } { 12 } x ^ { 4 } + C
B) ln9x13x3+C\ln 9 x - \frac { 1 } { 3 } x ^ { 3 } + C
C) 13x3ln9x19x3+C\frac { 1 } { 3 } x ^ { 3 } \ln 9 x - \frac { 1 } { 9 } x ^ { 3 } + C
D) 13x3ln9x+19x3+C\frac { 1 } { 3 } x ^ { 3 } \ln 9 x + \frac { 1 } { 9 } x ^ { 3 } + C

E) B) and D)
F) A) and B)

Correct Answer

verifed

verified

Evaluate the integral. - y3e7ydy\int y ^ { 3 } e ^ { - 7 y } d y


A) 17e7y[y3+y2+y+6]+C- \frac { 1 } { 7 } \mathrm { e } ^ { - 7 \mathrm { y } } \left[ \mathrm { y } ^ { 3 } + \mathrm { y } ^ { 2 } + \mathrm { y } + 6 \right] + C
B) 128y4e7y+C- \frac { 1 } { 28 } y ^ { 4 } e ^ { - 7 y } + C
C) e7y[17y3+349y2+6343y+62401]+C- \mathrm { e } ^ { - 7 \mathrm { y } } \left[ \frac { 1 } { 7 } \mathrm { y } ^ { 3 } + \frac { 3 } { 49 } \mathrm { y } ^ { 2 } + \frac { 6 } { 343 } \mathrm { y } + \frac { 6 } { 2401 } \right] + \mathrm { C }
D) e7y[17y3349y2+6343y62401]+Ce ^ { - 7 y } \left[ \frac { 1 } { 7 } y ^ { 3 } - \frac { 3 } { 49 } y ^ { 2 } + \frac { 6 } { 343 } y - \frac { 6 } { 2401 } \right] + C

E) B) and C)
F) B) and D)

Correct Answer

verifed

verified

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - 09xdx\int _ { 0 } ^ { 9 } x d x


A) 814\frac { 81 } { 4 }
B) 812\frac { 81 } { 2 }
C) 81
D) 4058\frac { 405 } { 8 }

E) B) and D)
F) A) and C)

Correct Answer

verifed

verified

Showing 341 - 360 of 460

Related Exams

Show Answer