Filters
Question type

Study Flashcards

Evaluate the integral. - 9sec4xdx\int 9 \sec ^ { 4 } x d x


A) 3tan3x+C3 \tan ^ { 3 } x + C
B) 3tan3x+C- 3 \tan ^ { 3 } x + C
C) 9(secx+tanx) 5+C9 ( \sec x + \tan x ) ^ { 5 } + C
D) 9tanx+3tan3x+C9 \tan x + 3 \tan ^ { 3 } x + C

E) C) and D)
F) A) and B)

Correct Answer

verifed

verified

Evaluate the integral. - cot3x7dx\int \frac { \cot ^ { 3 } x } { 7 } d x


A) 114cot2x+lnsinx+C\frac { 1 } { 14 } \cot ^ { 2 } x + \ln | \sin x | + C
B) 128cot4x+C\frac { 1 } { 28 } \cot ^ { 4 } x + C
C) 128cot4xsecx+C\frac { 1 } { 28 } \cot ^ { 4 } x \sec x + C
D) 114cot2x17lnsinx+C- \frac { 1 } { 14 } \cot ^ { 2 } x - \frac { 1 } { 7 } \ln | \sin x | + C

E) C) and D)
F) All of the above

Correct Answer

verifed

verified

Evaluate the integral. - 0πsin9tcos8tdt\int _ { 0 } ^ { \pi } \sin 9 t \cos 8 t d t


A) 117\frac { 1 } { 17 }
B) 917\frac { 9 } { 17 }
C) 1917\frac { 19 } { 17 }
D) 1817\frac { 18 } { 17 }

E) A) and B)
F) None of the above

Correct Answer

verifed

verified

Use integration by parts to establish a reduction formula for the integral. - cotnxdx,n1\int \cot ^ { n } x d x , n \neq 1


A) cotnxdx=1n1cotn1xcotn2xdx\int \cot ^ { n } x d x = \frac { - 1 } { n - 1 } \cot ^ { n - 1 } x - \int \cot ^ { n - 2 } x d x
B) cotnxdx=1n1cotn2xcotn1xdx\int \cot ^ { n } x d x = \frac { - 1 } { n - 1 } \cot ^ { n - 2 } x - \int \cot ^ { n - 1 } x d x
C) cotnxdx=1n1cotn1x+cotn1xdx\int \cot ^ { n } x d x = \frac { 1 } { n - 1 } \cot ^ { n - 1 } x + \int \cot ^ { n - 1 } x d x
D) cotnxdx=cotn1x+1n1cotn2xdx\int \cot ^ { n } x d x = - \cot ^ { n - 1 } x + \frac { 1 } { n - 1 } \int \cot ^ { n - 2 } x d x

E) All of the above
F) B) and C)

Correct Answer

verifed

verified

Showing 121 - 124 of 124

Related Exams

Show Answer