Filters
Question type

Differentiate the function. g(t) =t5ln9tg(t) =t^{5} \ln 9 t


A) 1+ln9t9t1+\frac{\ln 9 t}{9 t}
B) 59t3\frac{5}{9} t^{3}
C) t4(1+5ln9t) t^{4}(1+5 \ln 9 t)
D) t4(19+5ln9t) t^{4}\left(\frac{1}{9}+5 \ln 9 t\right)

E) A) and B)
F) B) and D)

Correct Answer

verifed

verified

Find the rate of change of y with respect to x at the given values of x and y. 2xy25x2y375=02 x y^{2}-5 x^{2} y-375=0 ; x = 3, y = -5

Correct Answer

verifed

verified

Refer to the law of laminar flow. Consider a blood vessel with radius 0.01 cm, length 3 cm, pressure difference 3,500 dynes /cm23,500 \text { dynes } / \mathrm{cm}^{2} and viscosity η\eta =.028. Find the velocity of the blood at radius r = 0.0010.001

Correct Answer

verifed

verified

Find all points at which the tangent line is horizontal on the graph of the function. y(x)=6sinx+sin2xy(x)=6 \sin x+\sin ^{2} x

Correct Answer

verifed

verified

Find f(a)f^{\prime}(a) . f(x)=2+x5x5f(x)=2+x-5 x^{5}

Correct Answer

verifed

verified

Suppose that F(x) =f(g(x) ) F(x) =f(g(x) ) and g(14) =2g(14) =2 , g(14) =5g^{\prime}(14) =5 , f(14) =15f^{\prime}(14) =15 , and f(2) =16f^{\prime}(2) =16 . Find F(14) F^{\prime}(14) .


A) 20
B) 8080
C) 24
D) 140
E) 17

F) A) and B)
G) A) and D)

Correct Answer

verifed

verified

Two cars start moving from the same point. One travels south at 5050 mi/h and the other travels west at 4040 mi/h. At what rate is the distance between the cars increasing 2 hours later? Round the result to the nearest hundredth.


A) 55.42 mi/h55.42 ~\mathrm{mi} / \mathrm{h}
B) 76.43 mi/h76.43 ~\mathrm{mi} / \mathrm{h}
C) 81.38 mi/h81.38 ~\mathrm{mi} / \mathrm{h}
D) 65.49 mi/h65.49 ~\mathrm{mi} / \mathrm{h}
E) 64.03 mi/h64.03~ \mathrm{mi} / \mathrm{h}

F) B) and E)
G) B) and D)

Correct Answer

verifed

verified

Find the average rate of change of the area of a circle with respect to its radius r as r changes from 5 to 6 .


A) 11π11 \pi
B) 36π36 \pi
C) 8π8 \pi
D) 6π6 \pi
E) 12π12 \pi

F) A) and C)
G) D) and E)

Correct Answer

verifed

verified

If f(x) =6cosx+sin2xf(x) =6 \cos x+\sin ^{2} x , find f(x) f^{\prime}(x) and f(x) f^{\prime \prime}(x) .


A) f(x) =6cos(2x) +2cos(x) f^{\prime \prime}(x) =-6 \cos (2 x) +2 \cos (x)
B) f(x) =6sin(x) +sin(2x) f^{\prime}(x) =-6 \sin (x) +\sin (2 x)
C) f(x) =6sin(2x) +sin(x) f^{\prime}(x) =-6 \sin (2 x) +\sin (x)
D) f(x) =6cos(x) +2cos(2x) f^{\prime \prime}(x) =-6 \cos (x) +2 \cos (2 x)
E) f(x) =2cos(2x) +6cos(x) f^{\prime \prime}(x) =-2 \cos (2 x) +6 \cos (x)

F) C) and E)
G) A) and C)

Correct Answer

verifed

verified

s(t) is the position of a body moving along a coordinate line; s(t) is measured in feet and t in seconds, where t0t \geq 0 . Find the position, velocity, and speed of the body at the indicated time. s(t)=t10ets(t)=t^{10} e^{-t} ; t = 1

Correct Answer

verifed

verified

If f(t) =9t+1f(t) =\sqrt{9 t+1} , find f(4) f^{\prime \prime}(4) .


A) 0.010-0.010
B) 0.0150.015
C) 0.033-0.033
D) 0.22-0.22
E) 0.0440.044

F) B) and D)
G) A) and E)

Correct Answer

verifed

verified

Use implicit differentiation to find an equation of the tangent line to the curve at the indicated point. y = sin xy6; (π2,1) \left(\frac{\pi}{2}, 1\right)


A) x = π2\frac{\pi}{2}
B) y = 6x + 1
C) y = x
D) y = 1

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Calculate yy^{\prime} . y=3xcosxy=3 \sqrt{x} \cos \sqrt{x}

Correct Answer

verifed

verified

Find the derivative of the function. h(t) =t93t7+8t6et8t6h(t) =\frac{t^{9}-3 t^{7}+8 t^{6} e^{t}}{8 t^{6}}


A) 3t23+8et3 t^{2}-3+8 e^{t}
B) 3t23+et3 t^{2}-3+e^{t}
C) 38\frac{3}{8} t2t^{2}- 38\frac{3}{8} +et+e^{t}
D) 9t821t6+et9 t^{8}-21 t^{6}+e^{t}

E) A) and D)
F) All of the above

Correct Answer

verifed

verified

Find the derivative of the function. f(x) f(x) = sinh 4x


A) -4 cosh 4x
B) 4 sinh 4x
C) -sinh 4x
D) 4 cosh 4x

E) A) and D)
F) A) and C)

Correct Answer

verifed

verified

If y=3x2+6xy=3 x^{2}+6 x and dxdt=5\frac{d x}{d t}=5 , find dydt\frac{d y}{d t} when x=2x=2 .


A) 60
B) 210210
C) 300
D) 260
E) None of these

F) C) and E)
G) B) and E)

Correct Answer

verifed

verified

Use logarithmic differentiation to find the derivative of the function. y=x8+1x13y=\sqrt[3]{\frac{x^{8}+1}{x-1}}


A) 7x88x7+13(x8+1) 2/3(x1) 4/3\frac{7 x^{8}-8 x^{7}+1}{3\left(x^{8}+1\right) ^{2 / 3}(x-1) ^{4 / 3}}
B) 7x88x713(x8+1) 2/3(x1) 4/3\frac{7 x^{8}-8 x^{7}-1}{3\left(x^{8}+1\right) ^{2 / 3}(x-1) ^{4 / 3}}
C) 7x88x7+13(x8+1) (x1) \frac{7 x^{8}-8 x^{7}+1}{3\left(x^{8}+1\right) (x-1) }
D) 7x88x713(x8+1) (x1) \frac{7 x^{8}-8 x^{7}-1}{3\left(x^{8}+1\right) (x-1) }

E) None of the above
F) A) and C)

Correct Answer

verifed

verified

Find the derivative of the function. y=8cos1(sin1t) y=8 \cos ^{-1}\left(\sin ^{-1} t\right)


A) y=81(sin1(t) ) 2y^{\prime}=-\frac{8}{\sqrt{1-\left(\sin ^{-1}(t) \right) ^{2}}}
B) y=8(1t2) (1sin1(t) ) y^{\prime}=-\frac{8}{\sqrt{\left(1-t^{2}\right) \left(1-\sin ^{-1}(t) \right) }}
C) y=8(1+t2) (1+(sin1(t) ) 2) y^{\prime}=-\frac{8}{\sqrt{\left(1+t^{2}\right) \left(1+\left(\sin ^{-1}(t) \right) ^{2}\right) }}
D) y=8(1t2) (1(sin1(t) ) 2) y^{\prime}=-\frac{8}{\sqrt{\left(1-t^{2}\right) \left(1-\left(\sin ^{-1}(t) \right) ^{2}\right) }}
E) y=8(1t2) y^{\prime}=-\frac{8}{\sqrt{\left(1-t^{2}\right) }}

F) A) and B)
G) A) and C)

Correct Answer

verifed

verified

Calculate yy^{\prime} . xey=y8x e^{y}=y-8

Correct Answer

verifed

verified

If a tank holds 5000 gallons of water, and that water can drain from the tank in 40 minutes, then Torricelli's Law gives the volume V of water remaining in the tank after t minutes as V=5000(1t40)2V=5000\left(1-\frac{t}{40}\right)^{2} . Find the rate at which water is draining from the tank after 9 minutes.

Correct Answer

verifed

verified

Showing 81 - 100 of 155

Related Exams

Show Answer